Monday, 23 January 2017

Contoh Soal Metode Einzigen Gleitenden Durchschnitt

Portal - Statistik Bertemu lagi dengan postingan kali ini, setelah sekian Lama offline Dari dunia blogger, tidak pernah lagi mengurusi Blog, nah Pada kesempatan kali ini Saya mau berbagi Kembali kepada semua sahabat Yang membutuhkan Tutorial atau pengetahuan tentang Prognose peramalan, mungkin beberapa hari kedepan Saya Akan banyak erinnerung tulisan tentang prognose. Semoga tulisan ini dapat Berguna Bagi Kita Sema. Pada Postingan Pertama Tentang Analisis Runtun Waktu Kali Ini, Saya Akan Berbagi Tentang Analisis Runtun Waktu Yang Paling Sederhana yaitu metode Verschieben Durchschnitt. Analisis runtun waktu merupakan suatu metode kuantitatif untuk menentukan pola Daten masa lalu yang telah dikumpulkan secara teratur. Analisis runtun waktu merupakan salah satu metode peramalan yang menjelaskan bahwa deretan beobachtungen pada suatu variabel dipandang sebagai realisasi dari variabel zufällig berdistribusi bersama. Gerakan musiman, adalah, gerakan, rangkaian, waktu, yang, sepanjang, tahun, pada, bulan-bulan, yang, sama, yang, selalu, menunjukkan, pola, yang, identik, Contohnya: harga saham, inflasi. Gerakan zufällig adalah gerakan naik turun waktu yang tidak dapat diduga sebelumnya als terjadi secara acak contohnya: gempa bumi, kematian dan sebagainya. Asumsi Yang Penting Yang Harus dipenuhi dalam memodelkan Runtun Waktu adalah asumsi kestasioneran artinya sifat-sifat Yang mendasari proses tidak dipengaruhi oleh Waktu atau proses dalam keseimbangan. Apabila asumi stasioner belum dipenuhi maka deret belum dapat dimodelkan. Namun, deret yang nonstasioner dapat ditransformasikan menjadi deret yang stasioner. Pola Daten Runtun Waktu Salah satu aspek yang paling penting dalam penyeleksian metode peramalan yang sesuai untuk daten runtun waktu adalah untuk mempertimbangkan perbedaan tipe pola daten. Ada empat Tip umum. Horizontal, trend, saisonal, dan zyklisch. Ketika Daten Beobachtungen berubah-ubah di sekitar tingkatan ata rata-rata Yang konstan. Sie haben keine Artikel im Warenkorb. Produkte vergleichen Es ist kein Artikel zum Vergleichen vorhanden. Sie haben noch keine Artikel in Ihrem Warenkorb. Ketika Daten Beobachtungen naik atau menurun pada perluasan Periode suatu waktu disebut Pola Trend. Pola zyklischen ditandai dengan adanya fluktuasi bergelombang Daten yang terjadi di sekitar garis Trend. Ketika observasi dipengaruhi oleh faktor musiman disebut pola jahreszeitlich yang ditandai dengan adanya pola perubahan yang berulang secara otomatis dari tahun ke tahun. Untuk runtun tiap bulan, ukuran variabel komponen jahreszeitlich runtun tiap Januari, tiap Februari, dan seterusnya. Untuk runtun tiap triwulan ada elemen empat musim, satu untuk masing-masing triwulan. Einzelbewegung Durchschnitt Rata-rata bergerak tunggal (Beweglicher Durchschnitt) untuk periode t adalah nilai rata-rata untuk n jumlah data terbaru. Dengan munculnya Daten baru, maka nilai rata-rata yang baru dapat dihitung dengan menghilangkan Daten Yang terlama dan menambahkan Daten Yang terbaru. Verschiebender Durchschnitt ini digunakan untuk memprediksi nilai pada periode berikutnya. Modell ini sangat cocok digunakan pada Daten Yang stasioner Daten Daten Yang konstant terhadap variansi. Tetapi tidak dapat bekerja dengan daten yang mengandung unsur trend atau musiman. Rata-rata bergerak pada orde 1 akan menggunakan Daten Terakhir (Ft), Dan menggunakannya untuk memprediksi Daten Pada Periode selanjutnya. Metode ini sering digunakan pada daten kuartalan atau bulanan untuk membantu mengamati komponen-komponen suatu runtun waktu. Semakin besar orde rata-rata bergerak, semakin besar pula pengaruh pemulusan (Glättung). Dibanding dengan rata-rata sederhana (dari satu-daten masa lalu) rata-rata bergerak berger T mempunyai karakteristik sebagai berikut. Hanya menyangkut T-Periode tarakhir dari Daten yang diketahui. Jumlah titik Daten dalam setiap rata-rata tidak berubah dengan berjalannya waktu. Kelemahan dari metode ini adalah. Metode ini memerlukan penyimpanan yang lebih banyak karena semua T pengamatan terachhar harus disimpan, tidak hanya nilai rata-rata. Metode ini tidak dapat menanggulangi dengan baik adanya tendenz atau musiman, walaupun metode ini lebih baik dibanding rata-rata gesamt. Diberikan N Titik Daten dan diputuskan untuk menggunakan T pengamatan Pada setiap rata-rata (Yang disebut dengan rata-rata bergerak Orde (T) atau MA (T), sehingga keadaannya adalah sebagai berikut: Studi Kasus Suatu Perusahaan Pakaian sepakbola periode januari 2013 sampai dengan April 2014 menghasilkan Daten penjualan sebagai berikut. Manajemen ingin meramalkan hasil penjualan menggunakan metode peramalan yang cocok dengan Daten tersebut Bandingkan metode MA Tunggal orde 3, 5, 7 dengan aplikasi Minitab dan MA ganda ordo 3x5 dengan aplikasi Excel, Manakah metode yang paling tepat untuk Daten di atas dan berikan alasannya Baiklah Sekarang kita Muley, kita Muley Dari Einzel Moving Average Adapun Langkah-Langkah melakukan forcasting terhadap Daten penjualan Pakaian sepak bola adalah:... Membuka aplikasi Minitab dengan melakukan Doppelklick pada Symbol Desktop Setelah aplikasi Minitab terbuka dan SIAP digunakan, buat nama variabel Bulan dan Daten kemudian masukkan Daten sesuai studi kasus. Sebelum memulai untuk melakukan Vorhersage, terlebih dahulu yang Harus dilakukan adalah Melihat bentuk sebaran Daten Runtun waktunya, klik Menü Graph 8211 Time Series Plot 8211 Einfach, masukkan variabel Daten ke kotak Serie , Sehingga didapatkan Leistung seperti gambar. Selanjutnya untuk melakukan Vorhersagen dengan metode Moving Durchschnitt single orde 3, klik menu Stat 8211 Zeitreihe 8211 Moving Average. . sehingga Muncul tampilan seperti gambar dibawag, pada kotak Variable: masukkan Variabel Daten, pada kotak MA Länge: masukkan angka 3, selanjutnya berikan centang Pada Prognosen generieren dan isi kotak Anzahl der Prognosen: dengan 1. Klik Taste Option dan berikan judul dengan MA3 dan klik OK. Selanjutnya klik button Lagerung dan berikan centang pada Gleitende Durchschnitte, Passt (Ein-Perioden-Prognosen), Residuals, dan Prognosen, klik OK. Kemudian klik Graphs dan pilih Plot vorhergesagt vs tatsächlichen dan OK. Sehingga Muncul Ausgang seperti gambar dibawah ini, Pada gambar diatas, terlihat dengan jelas hasil Dari Prognosedaten tersebut, pada periode ke-17 nilai ramalannya adalah 24, denngan MAPE, MAD, dan MSD seperti Pada gambar diatas. Cara peramalan dengan metode Doppelte Verschiebung Durchschnittliche dapat dilihat DISINI. Ganti saja langsung angka-angkanya dengan daten sobat, hehhe. Maaf yaa saya tidak jelaskan, lagi laperr soalnya: D demikian postingannya, semoga bermanfaat. Terimakasih Atas kunjungannya. Single Moving Average (Metode Rata-rata Bergerak Tunggal) Einzel Moving Average (Metode Rata-rata Bergerak Tunggal) Einzel Moving Average (Metode Rata-rata Bergerak Tunggal) Metode einzigen gleitenden Durchschnitt merupakan metode Yang mudah penghitungannya. Tujuan utama dari penggunaan metode ini adalah untuk menghilangkan atau mengurangi acakan (zufälligkeit) dalam deret waktu. Metode einzeln gleitender Durchschnitt mula-mula memisahkan unsur tren siklus dari daten dengan menghitung rata-rata bergerak yang jumlah unsurnya sama dengan panjang musiman. Nilai rata-rata baru dapat dihitung dengan Membran nilai Observasi Yang paling lama als memasukkan nilai observasi baru. Rata-rata berggerak inilah yang kemudian dijadikan ramalan untuk periode yang akan datang. Adapun pendekatan Yang dapat digunakan adalah: Dimana: Ft1 peramalan Pada periode t1 X1 nilai aktual t Anzahl der Beiträge observasi rata-rata bergerak Contoh: Selaku manajer Garmen, Anda ingin melakukan peramalan Tingkat permintaan jaket Anda Pada tahun 2013 Adapun Daten masa lampau untuk Tingkat permintaan jaket adalah (dalam ribuan Stück): Jahr (1) 2001 386 Stk Jahr (2) 2002 340 Stück Jahr (3) 2003 390 Stück Jahr (4) 2004 368 Stück Jahr (5) 2005 425 Stück Jahr (6) 2006 440 Stück Tahun (7) 2007 410 Stück Jahr (8) 2008 466 Stück Jahr (9) 2009 330 Stück Jahr (10) 2010 350 Stück Jahr (11) 2011 375 Stück Jahr (12) 2012 380 Stück Jika menggunakan rata rata bergerak tiga bulanan maka cara penghitungan untuk periode 13 (tahun 2013) adalah Jika ingin melakukan peramalan pada periode 14 (tahun 2014 maka Daten yang digunakan untuk melakukan rata rata bergerak Dari periode Kedua sampai keempat, yaitu. dan demikian seterusnya jika melakukan peramalan permintaan untuk periode berikutnya Apabila menggunakan rata rata bergerak lima bulanan maka cara penghitungan untuk periode 13 dan 14 (tahun 2013 2014) adalah dengan cara Merata-rata lima Daten, yaitu: dan demikian seterusnya jika melakukan peramalan permintaan untuk periode berikutnya. C. Einzel exponentielle Glättung (Pemulusan Eksponensial Tunggal) Metode ini menunjukkan adanya karakteristik Dari pemulusan Daten dengan menambahkan Suatu faktor Yang sering disebut dengan konstanta pemulusan (Glättungskonstante) dengan simbol alpha (). Pemulusan eksponensial salam bentuk sederhana tidak memperhitungkan pengaruh tren sehingga nilai sangat kecil und dapat dihilangkan. Nilai rendah cocok pada permintaan Erzeugnis yang stabil (tanpa tren atau variasi siklikal). Sedangkan nilai tinggi untuk perubahan-perubahan Yang sesungguhnya cenderung terjadi karena Lebih tanggap terhadap permintaan Yang fluktuatif. Nilai tinggi ini digunakan Pada analisis Daten Pada pengenalan produk Baru, kampanye promosi, antisipasi terhadap resesi, dan juga sesuai bagi Industri Pakaian jadi Yang memerlukan tanggapan Yang Cepat. Metode einzelne exponentielle Glättung ini dapat didekati dengan rumus: dimana: Xt nilai aktual terbaru Ft peramalan terakhir Ft1 peramalan untuk periode yang akan datang konstanta pemulusan Contoh. Selaku manajer Garmen, Anda ingin melakukan peramalan Tingkat permintaan jaket Anda Pada bulan Januari dan Februari 2013 Adapun Daten masa lampau untuk Tingkat permintaan jaket adalah (dalam ribuan Stück): Bulan (1) 386 Stück Bulan (7) 410 Stück Bulan (2) 340 Stück Bulan (8) 466 Stück Bulan (3) 390 Stück Bulan (9) 330 Stück Bulan (4) 368 Stück Bulan (10) 350 Stück Bulan (5) 425 Stück Bulan (11) 375 Stück Bulan (6) 440 Stück Bulan (12) 380 Stück Tabel 8. Rekapitulasi permintaan jaket dan perhitungan dengan metode einzelne exponentielle Glättung Periode (bulan) Daten permintaan Nilai ramalan dengan konstanta pemulusan 0,2 Januari 2012 386 Februari 340 F13 0,2 (386) (1-0, 2) (386) 386 Maret 390 F14 0,2 (340) (1-0,2) (386) 376,8 April 368 F15 0,2 (390) (1-0,2) (376,8) 379 , 44 Mei 425 F16 0,2 (368) (1-0,2) (379,44) 377.152 Juni 440 F17 386.722 Juli 410 F18 397.377 Agustus 466 F19 399.901 September 330 F20 413.121 Oktober 350 F21 396497 November 375 F22 387.197 Desember 380 F23 384.758 Jadi Dari peramalan dengan menggunakan metode einzelne exponentielle Glättung dapat diketahui bahwa Tingkat permintaan jaket pada Januari 2013 adalah sebanyak 386.000 Stück dan pada Februari 2013 sebesar 376,800 pcs. Moving Durchschnitt merupakan indikator yang digunakan dan paling standar sering Lattenzaun. Jika di Indonesiakan artina kira-kira adalah rata-rata bergerak. Gleitender Durchschnitt sendiri memiliki aplikasi yang sangat luas meskipun sederhana. Dikatakan Sederhana karena Pada dasarnya metode ini hanyalah Pengembangan Dari metode rata-rata Yang kita kenal disekolah (nah, ada gunanya juga bukan kita bersekolah). Rata-rata bergerak tunggal (Beweglicher Durchschnitt) untuk periode t adalah nilai rata-rata untuk n jumlah data terbaru. Dengan munculnya Daten baru, maka nilai rata-rata yang baru dapat dihitung dengan menghilangkan Daten Yang terlama dan menambahkan Daten Yang terbaru. Verschiebender Durchschnitt ini digunakan untuk memprediksi nilai pada periode berikutnya. Modell ini sangat cocok digunakan Pada Daten Yang stasioner atau Daten Yang Konstant terhadap variansi, tetapi tidak dapat bekerja dengan Daten Yang mengandung unsur Trend atau musiman. Rata-rata bergerak pada orde 1 akan menggunakan Daten Terakhir (F t), Dan menggunakannya untuk memprediksi Daten Pada Periode selanjutnya. Metode ini sering digunakan pada daten kuartalan atau bulanan untuk membantu mengamati komponen-komponen suatu runtun waktu. Semakin besar orde rata-rata bergerak, semakin besar pula pengaruh pemulusan (Glättung). Dibanding dengan rata-rata sederhana (dari satu-daten masa lalu) rata-rata bergerak berger T mempunyai karakteristik sebagai berikut. Hanya menyangkut T-Periode tarakhir dari Daten yang diketahui. Jumlah titik Daten dalam setiap rata-rata tidak berubah dengan berjalannya waktu. Kelemahan dari metode ini adalah: Metode ini memerlukan penyimpanan yang lebih banyak karena semua T pengamatan terakhir harus disimpan. Tidak hanya nilai rata-rata. Metode ini tidak dapat menanggulangi dengan baik adanya tendenz atau musiman, walaupun metode ini lebih baik dibanding rata-rata gesamt. Diberikanische N titikdaten dan diputuskan untuk menggunakan T pengamatan pada setiap rata-rata (Yang-Erbsen-Dengan-Rata-Rata-Bergerakorde (T) atau MA (T), sehingga keadaannya adalah sebagai berikut:


No comments:

Post a Comment